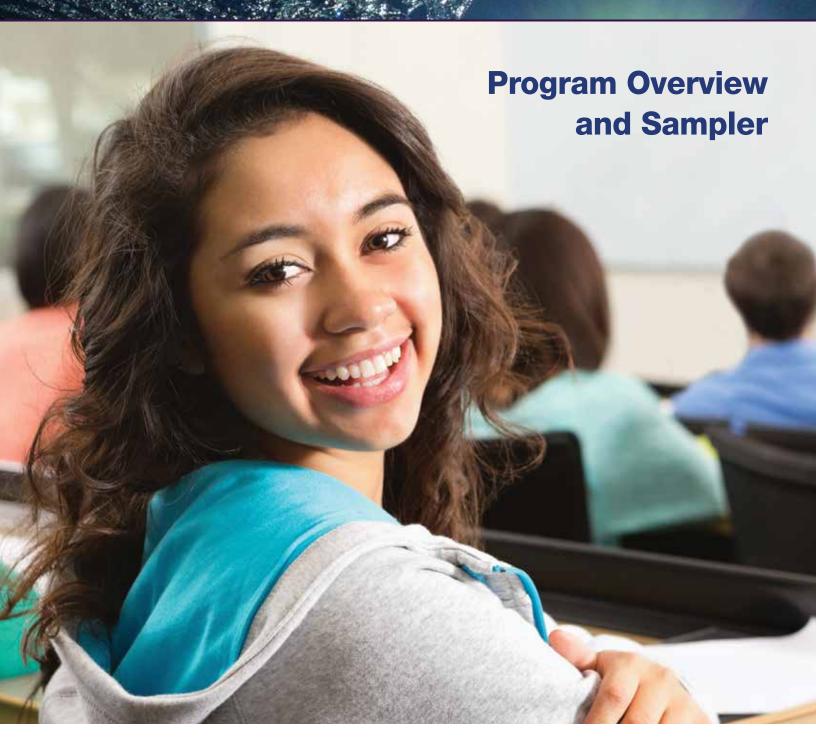
CONNECTIONS Mathematics - Algebra 1



AN AMSCO® PUBLICATION

CONNECTIONS Mathematics - Algebra 1

Preparing for College and Career

The *Connections Mathematics* program provides the foundation for Algebra 1 success. Students learn through direct instruction, discovery-based learning, and guided practice, allowing them to transfer skills to real-world situations, problemsolving activities, and end-of-course assessment. Through active discourse and collaborative activities, students learn to communicate effectively and gain the perseverance necessary to solve difficult problems.

Learning Through Multiple Approaches

Discovery-Based Learning	Application	
 Guided Instruction Guided Practice Connect to Testing	 Concepts in the Real World Extension and Interactive Activities Authentic End-of-Course Assessment Practice 	
Personalized Practice	Direct Instruction	
 i-Practice Personalized Assignments (Digital) Video Model Problems (QR Codes, Digital) Multiple Problem Help Options (Digital) 	Lesson IntroductionWords to KnowRemediation Activities	

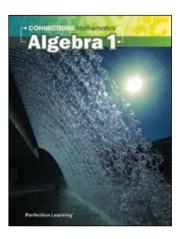
Student-Centered Approach to Algebra 1

The *Connections Mathematics: Algebra 1* program focuses on active learning. Engage students as they explore concepts, learn through guided instruction, and apply their knowledge in the extension and assessment activities.

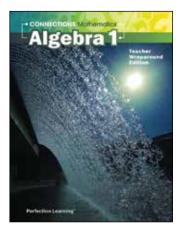
Prepare Students for Success

Designed specifically for Algebra 1 success, the curriculum ensures that students will have the knowledge and skills that matter for high school end-of-course assessment and their college and career paths. The standards are addressed in each lesson and are listed at point of use.

Program Components

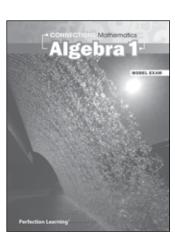


Student Worktext



Teacher Wraparound Edition

Algebra 1 Digital



Model Exam

PERSONALIZED LEARNING

- Lesson videos, accessed through QR codes, provide students with model problems on demand.
- Digital assignments can be customized and delivered individually, to small groups, or to the whole class.
- Through *i-Practice*, each student can practice skills to mastery.

ACTIVE DISCOURSE AND MATH LITERACY

Throughout each lesson, students and teachers engage in whole class, small group, and peer discussions. Students develop communication skills and math literacy as they work with others to understand concepts, build skills, and tackle more complex problems.

DEPTH OF KNOWLEDGE (DOK)

Concepts, questions, and activities are carefully designed to meet the full range of Webb's task complexity. All practice and assessment items are tagged with DOK levels. Independent practice and chapter tests prepare students for the rigor of high school end-of-course assessment as well as other complex tasks and projects.

4. Which of the following equations is not equivalent to the rest?

A.
$$y = \frac{1}{3}x - 7$$

C.
$$x - 3y = 21$$

B.
$$y+5=\frac{1}{3}(x-6)$$

D.
$$3x - y = 21$$

(DOK 3)

ASSESSMENT

Each chapter and lesson focuses on specific learning outcomes with aligned formative and summative assessments. Items mirror those on high-stakes assessments.

- Connect to Testing
- independent practice
- chapter-level and comprehensive end-of-course practice
- chapter tests

- diagnostic tests
- · digital assignments, quizzes, and tests
- teacher-built assignments and tests using an extensive item bank and online assignment builder

DIFFERENTIATION

Support for ELLs, struggling, and advanced students helps all students succeed and be challenged.

- Point-of-use vocabulary and math literacy support, remediation suggestions, and videos ensure content is accessible.
- Extension activities and a rich problem item bank ensure students remain challenged.

Provide the following sentence frames to help students respond to the RECAP question.

Beginning/Intermediate:

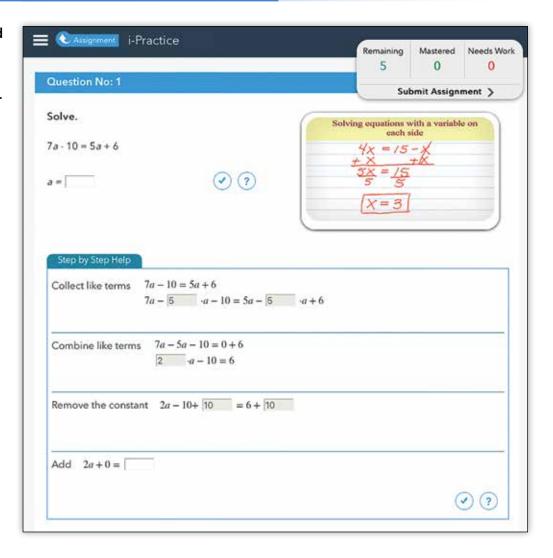
- One way to find slope is _____.
- This way is best for _____.
- Another way to find slope is _____.
- This way is best for _____.

Intermediate/Advanced:

- One way to find slope is _____.
- This way is most appropriate for
- Another way to find slope is _____
- This way is most appropriate for

DIGITAL ASSIGNMENTS, QUIZZES, AND TESTS

- i-Practice personalized assignments
- point-of-use support (videos, hints, step-bystep help) and smart feedback
- pre-built diagnostic, chapter, and summative tests
- question types include
 - -multiple-choice
 - -multiple-select
 - —open response
 (text)
 - —open response (Equation Editor)
 - -drag and drop
 - -editing task choice
 - -selectable hot text
 - -GRID items
 - -table items
 - -matching items
- multiple attempts allowed for homework and *i-Practice*
- print capability for offline assignments



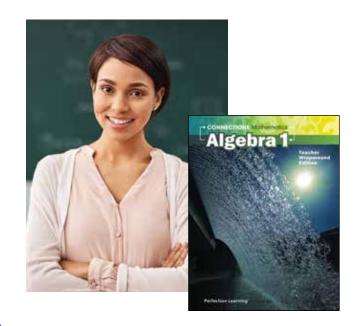
CLASS AND STUDENT ANALYTICS

- performance measures by skill and standard
- extensive drill down capabilities (class, student, item)
- visual highlighting of strengths and performance gaps

LESSON PLANNING AND INSTRUCTIONAL SUPPORT

The teacher wraparound edition, available in both print and digital formats, provides planning guidance for each chapter and lesson, including

- Chapter Planner
- chapter goals with sample problems
- lesson prerequisites and suggested pacing
- discussion questions and suggested answers
- guided practice objectives with implementation ideas to encourage active discourse



OPEN EDUCATIONAL RESOURCES

No more searching the internet for lessons and videos! Open educational resources are provided at point of use.

 reviewed and vetted by math educators to ensure usefulness and appropriateness

 videos, interactive activities, and lesson-specific activities using programs such as Desmos and GeoGebra

 one-click access to all suggested resources via the digital teacher edition

DIGITAL COURSE MANAGEMENT

Teachers can easily create, modify, and share digital assignments, quizzes, and tests. In addition, teachers can

- automate grading with instant feedback
- customize assignments
- create individual, group, and whole class assignments
- review answers and modify grades
- modify assignments and due dates

CHAPTER INTRODUCTION

- Chapter Planner includes standards, lesson prerequisites, sequencing, and representative sample problems. Lesson pacing suggestions are also available.
- Lesson alignment with the national standard identified in the Chapter Planner and at the beginning of each lesson in the Student Worktext.
- Chapter Overview and **Chapter Goals** clearly state the learning objectives.
- Concepts in the Real World provides students insight into how chapter concepts are applied outside the classroom.
- Connect to Testing engages students in chapter concepts using example problems, guided instruction, and active discourse. Promotes student discovery of new concepts and their application.
- Words to Know introduces chapter concept vocabulary.

Chapter Planner

The lessons in this chapter focus on writing, graphing, and solving systems of linear equations and systems of linear

Lesson Alignment	When Do I Teach This Lesson?
Lesson 1 Graphing Linear Systems of Equations (A.CED.3, A.REI.6, A.REI.11)	Students should know how to rewrite linear equations into slope-intercept form and how to graph linear equations.
Lesson 2 Solving Linear Systems by Elimination or Substitution (A.REI.5, A.REI.6, A.REI.11)	This lesson could be split into two parts (substitution, elimination) if your students benefit from having more time to practice new skills.
Lesson 3 Creating Systems of Linear Equations (A.CED.2, N.Q.2, A.CED.3, A.REI.5, A.REI.6, A.REI.11)	Teach this lesson after demonstrating all methods of solving systems of linear equations.
Lesson 4 Systems of Linear Inequalities in the <i>xy</i> -Plane (A.CED.3, A.REI.12)	Prior to this lesson, discuss how to determine if an ordered pair is a solution to a linear inequality. Address how to graph linear inequalities including those with vertical and horizontal boundary lines.

Chapter Sample Problems

1. Select the point(s) in the table that are solution(s) to the system of

equations:
$$\begin{cases} 6x - 4y = 12\\ y = \frac{3}{2}x - 3 \end{cases}$$

x	-3	0	2	4	6
У	-7.5	-3	0	3	6

2. In a system of linear equations with no solution, the equations have the same

A. v-intercept

B. point in common

C. x-intercept

D. slope

3. Edita and Janina are buying school supplies. Edita buys 5 notebooks and 6 binders for a total of \$25.45. Janina buys 4 notebooks and

8 binders for \$30.60. Boipelo later goes to the same store and buys 3 notebooks and 2 binders. What is his total?

4. Which of the following points are solutions to $\begin{cases} y < 4x - 3 \end{cases}$ $\left(x-5y\leq10\right)^{?}$ Select all that apply.

A. (1, 1)

D. (-3, 1) **B.** (5, -1)**E.** (-6, -6)

C. (4, 2)

Introduction

Chapter 6 Systems

Chapter Goals:

At the end of this chapter, students should be able to:

- · graphically solve a system of two linear equations.
- · algebraically solve a system of two linear equations using elimination or substitution.
- · write a system of linear equations to model a given situation.
- · represent constraints using inequalities.
- · graph systems of linear inequalities in the xy-plane and shade the solution region.

Algebra 1

© Perfection Learning®

What do systems of linear equations have to do with your smartphone?

Quite a bit! Your smartphone is loaded with applications (apps), many of which make use

black and white, or to embellish your natural features? The programming that makes these types of actions possible partially relies on transformations of systems of equations. This is also the same type of programming that ma the characters on your favorite

animated television shows and video games run, jump, walk, sit, swim, and more While the transformation of

systems is a topic that is beyond this course, this chapter lays the foundation for this type of work.

CONNECT TO TESTING

(DOK 2)

Directions: *Read the questions and work through the solution steps with a partner.*

Shamira can exercise no more than 9 hours per week. Walking on the treadmill burns 150 calories per hour. Participating in cycling class burns 425 calories per hour. To meet her fitness goal, Shamira would like to burn at least 1.700 calories each week.

Let w be the number of hours walking on the treadmill, and let c be the number of hours of cycling class. Which values (w, c) represent the hours Shamira could work out and meet her fitness goals? Choose all that are correct.

(A.)(3,3)

B. (9,0)

 \mathbf{C}_{\bullet} (0.10)

(E.) (0, 5)

Understand It: You will need to write two inequalities that meet the stated constraints:

- · exercise no more than 9 hours per week
- · burn at least 1,700 calories each week

Visualize It: Graphically, the solution to a system of linear inequalities lies where the shading overlaps. Use the space below to sketch a system of linear inequalities with overlapping shading.

Student sketches will vary. Generally students should sketch two lines on a labeled coordinate plane and create overlapping shading. Students should understand that the overlapping shading represents the solution to the system.

Solve It: The variable w represents the number of hours walking on the treadmill, and the variable crepresents the number of hours of cycling class.

Use the given variables and space below to complete the inequality representing the constraint exercise no more than 9 hours per week.

constraint burn at least 1,700 calories each week.

Use the given variables and space below to

complete the inequality representing the

 $w + c \le 9$

 $150w + 425c \ge 1700$

Once you write the system of inequalities, you can solve by graphing or by substituting each point into each inequality you wrote. If the point makes both inequalities true, then it is a solution to the system. Work for student solutions will vary

Circle the correct answer choice(s): A B C D E

WORDS TO KNOW

coinciding lines elimination constraints

substitution

system of linear inequalities

parallel system of linear equations

© Perfection Learning® No reproduction permitted

Chapter 6 Systems

CONNECT TO TESTING

Use these questions to help your students engage with the process of solving a simulated test question.

1. Should you solve this question using a system of linear equations or a system of linear inequalities? How do you know?

You should use a system of linear inequalities. Student reasoning will vary. One possible reason: The key words "no more than" and "at least" indicate "less than or equal to" and "greater than or equal to."

2. How can you use the information in the problem to write a system of inequalities?

Student answers may vary. One possible answer: The unknown quantities are already defined. Read the rest of the problem carefully to determine which information can be used to create one inequality and which information can be used for the other inequality.

3. What are the methods you can use to determine if a point satisfies a system of linear inequalities?

Student answer will vary. One possible answer: For a system of inequalities, you can graph both inequalities, either by hand or using technology, and use the graph to determine if the point in question lies in the solution region. You can also substitute the values for the point into each inequality. If a true statement results for both inequalities then the point is a solution.

4. How is solving a system of linear inequalities similar to solving a system of linear equations? How is it different?

Student answers will vary. One possible answer: To solve a system of inequalities, you must look at a graph of the inequalities or substitute values into the inequalities to see if true statements result. You can use either of these methods to solve systems of linear equations as well, but you can also solve systems of linear equations using algebraic methods such as elimination or substitution. 7

LESSON: INTRODUCTION

- Each lesson begins with short, direct instruction and transitions to guided instruction.
- Discussion questions and interactive activities prompt active discourse and student discovery.
- Extension activities promote visualization and application of concepts.
- ELL activities such as sentence frames, vocabulary notebooks, and graphic organizers help build math literacy.
- Videos give learners additional support.

INTRODUCTION

How do you determine when to use substitution and when to use elimination to solve a system of equations?

Student answers will vary. One possible answer: Examine how the system is presented. If both equations are in slope-intercept form and don't have any fractions or decimals, I would use the substitution method. I would also use this method if one of the equations was solved for *x* or *y*. If both equations were in standard form, I would use the elimination method.

How does solving by elimination compare with solving by the substitution method?

The elimination method is used when both equations are in standard form. In this method you eliminate either the *x* or the *y* variable by first adding the equations. In the substitution method, you substitute one equation into the other in order to solve for one of the variables.

Why is it sometimes important to use the elimination or substitution method rather than the graphing method to solve a system of equations?

It is not always easy to graph systems of equations accurately by hand. Additionally, if the solution is fractional, it can be difficult to read from the graph.

8

LESSON 2

Solving Linear Systems by Elimination or Substitution

In this lesson you will solve systems of linear equations by elimination and substitution.

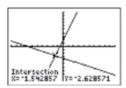
INTRODUCTION Elimination and Substitution

Sometimes it's hard to find the solution to a graphed system.

Look at the system
$$\begin{cases} y = 3x + 2 \\ y = -\frac{1}{2}x - 3\frac{2}{5} \end{cases}$$
 shown at the right.

Elimination

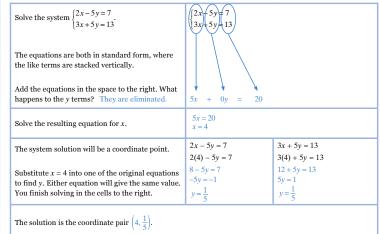
The lines intersect and have a single solution at approximately (-1.54, -2.63). Because this point does not have integer coordinates, you cannot find an exact solution by graphing unless you use a graphing calculator. Luckily, there are two additional methods for solving systems of equations—**elimination** and **substitution**.



Substitution

Main Idea:	Main Idea:
 Add the two equations together so that one variable is eliminated. 	Substitute an expression for one variable into the other equation.
When to Use:	When to Use:
• Often easiest to use when the equations are in standard form, $Ax + By = C$.	• Often easiest to use when one or both equations have one variable isolated or are in $y = mx + b$
	forms

Solving by <u>elimination</u>:



146 Chapter 6 Systems

© Perfection Learning® No reproduction permitted

EXTENSION ACTIVITIES

Activity

Solving Linear Systems Algebraically

In this activity, students will algebraically solve linear systems of equations. If there is one ordered pair solution, they will then drag the point to the intersection on the graph. (Approximately 20 minutes)

https://www.geogebra.org/m/NHYqDPnS

LESSON: GUIDED INSTRUCTION

• Standards are clearly identified.

A.REI.5 • A.REI.6 • A.REI.11

LESSON 2

• Solving using substitution:

Solve the system $\begin{cases} y = \frac{2}{3}x \\ 2x + 3y = 4 \end{cases}$ Substitute the expression $\frac{2}{3}x$ for y in the second equation. Then simplify and solve the equation for x .	$2x + 3\left(\frac{2}{3}x\right) = 4 \qquad 2x \\ 4x$	$x + \frac{6}{3}x = 4 + 2x + = 4 = 4 = 1$
Now substitute the value found for x into one of the original equations to find y .	$y = \frac{2}{3}(1) = y = \frac{2}{3}$	2(1)+3y=4 2+3y=4 3y=2
The solution is the coordinate point $\left(1, \frac{2}{3}\right)$.		$y = \frac{2}{3}$

GUIDED INSTRUCTION Other System Solutions

When solving a system using elimination or substitution, \underline{all} the variables will cancel out when there is no solution or infinitely many solutions.

A System with No Solution	A System with Infinitely Many Solutions
$\begin{cases} y = 2x - 1 \\ -2x + y = -5 \end{cases}$	$\begin{cases} 4x + y = 7 \\ 8x + 2y = 14 \end{cases}$
• Substitute $2x - 1$ in for y in the second equation. Then simplify and solve. Use the space below.	• You need to multiply the first equation by -2 to eliminate a variable.
-2x + (2x - 1) = -5 $-2x + 2x - 1 = -5$ $0 - 1 = -5$ $-1 = -5$	$-2(4x + y) = -2(7) \rightarrow -8x - 2y = -14$ Add this to the second equation. Then simplify and solve. Use the space below. -8x - 2y = -14
The variables are gone and you are left with the statement $-1 = -5$, which is <u>false</u> .	-6x - 2y = -14 $+8x + 2y = 14$ $0x + 0y = 0$ $0 = 0$ The variables are gone and you are left with the statement $0 = 0$, which is true.
When the variables cancel and the statement is false, there is no solution.	When the variables disappear and the statement is true, there are infinitely many solutions.

RECAP

1. Describe a situation in which each solving method: graphing, elimination, substitution, would be preferable. Student answers will vary. Generally, graphing would be a useful method if the solution is a point with small integer coordinates and whose equations are easy to graph in slope-intercept form. Elimination is a useful method if the equations are both in standard form so the x, y and constant terms are in the same order in each equation. Substitution is a useful method when one of the equations has one of the variables already isolated, or if both equations are in slope-intercept form.

 ${\mathbb C}$ Perfection Learning $^{\scriptscriptstyle B}$ $\,$ No reproduction permitted.

Lesson 2 Solving Linear Systems by Elimination or Substitution 147

Video

Solving Systems of Equations Using Elimination By Addition

This video explains how to solve systems of linear equations using the elimination method. (Length: 9:59)

https://www.youtube.com/watch?v=ej25myhYcSg

Instruction

(ELL) VOCABULARY

• Ask students to record the following academic vocabulary and definitions in their Vocabulary Notebook: additional* (another), stacked (placed on top of each other), either (one or another), neither (not one or the other), description (a statement/ sentence that tells what something is like), paired (joined in groups of two), individually (one at a time, alone), exact (fully or completely accurate, correct).

Provide the following sentence frames to help students respond to the RECAP question.

Beginning/Intermediate:

- Graphing is better when ____
- Elimination is better when ____.
- Substitution is better when ____.

LESSON: GUIDED PRACTICE

- Each activity has a clearly stated purpose and stepped-out support.
- Scaffolded practice provides opportunities for small group and peer-to-peer discussions.
- Remediation activities provide reteaching and reinforcement opportunities.
- All guided practice activities include DOK levels.

GUIDED PRACTICE

Question 2 Remediation: Table Activity

Purpose

This activity gives students more practice with solving by elimination.

Implementation

- Copy the table below, without answers, onto the board, or display using projection equipment with the answers covered.
- Have the students complete the chart individually or in pairs, placing a check mark in the column "Elimination" or "Substitution" to show which method would be best for solving the given system.
- Students can solve the systems independently or you can lead the class. Discuss why elimination or substitution is preferable.

LESSON 2 Solving Linear Systems by Elimination or Substitution

GUIDED PRACTICE

- $y = -\frac{1}{2}x 3\frac{2}{5}$ using substitution. Give your answers as fractions. (DOK 2)
 - Both equations are solved for y, so substitute 3x + 2 into the second equation for y. Solve the resulting equation for x. $3x+2=-\frac{1}{2}x-3\frac{2}{5}$

$$3x + 2 = -\frac{2}{2}x - \frac{17}{5}$$

$$10(3x + 2) = 10\left(-\frac{1}{2}x - \frac{17}{5}\right)$$

$$35x = -54$$

$$x = -\frac{54}{3}$$

Step 2 Substitute the value found for x into either of the original equations. Solve for y.

$$y = 3\left(-\frac{54}{35}\right) + 2 \qquad y = -\frac{162}{35} + \frac{7}{3}$$
$$y = -\frac{162}{35} + 2 \qquad y = -\frac{92}{35}$$

- **Step 3** Give the solution to the system as a coordinate pair. $\left(-\frac{54}{25}, -\frac{92}{25}\right)$
- 2. In the system $\begin{cases} -2x + 3y = 3 \\ 5x + 5y = 25 \end{cases}$, neither the x nor the y variables eliminate when the equations are
 - a Multiply one or both equations by a constant so that one of the variables will be eliminated
 - b Solve the system of equations.
 - Choose a variable, x or y, to eliminate.
 - \bullet If choosing x , what number is the least common multiple of both

- If choosing y, what number is the least common multiple of both 3 and 5? 15
- Choose to eliminate x. The coefficients -2 and 5 both are factors of 10. If one of the x terms is negative and the other is its opposite, the x-terms will eliminate when added. Multiply the first equation by 5 and the second equation by 2.

$$5(-2x + 3y) = 5(5) \rightarrow -10x + 15y = 25$$

$$2(5x + 5y) = 2(25) \rightarrow 10x + 10y = 50$$

148 Chapter 6 Systems

© Perfection Learning® No reproduction permitted

System	Elimination	Substitution	Solution
$\begin{cases} 2x + 3y = 12\\ 2x - 3y = -6 \end{cases}$	✓		$\left(\frac{3}{2},3\right)$
$\begin{cases} 6x - 2y = 14 \\ y = -\frac{1}{2}x \end{cases}$		√	(2,-1)
$\begin{cases} 5x + 3y = 14\\ 3x - 3y = 18 \end{cases}$	~		(4,-2)
$\begin{cases} 4x - 3y = 19\\ 5x + 3y = 17 \end{cases}$	✓		(4,-1)

Solving Linear Systems by Elimination or Substitution LESSON 2

 ${\bf Step~3} \hskip 5mm {\rm Add~the~equations~and~solve~for~the~variable~in~the~space~below}.$

$$-10x+15y=25$$

$$+10x+10y=50$$

$$25y=75$$

$$y=3$$

Step 4 Substitute the variable value into either original equation to solve for the other variable.

$$-2x + 3(3) = 5$$

 $-2x + 9 = 5$
 $-2x = -4$
 $x = 2$

Step 5 Write the solution as a coordinate pair. (2,3)

 $\textbf{3.} \ \ \text{Hamburgers cost 1.79 and an order of fries costs 0.99. A couple orders 5 items and spends 7.35. The 0.99 are the state of the$ solution to the system $\begin{cases} 1.79x + 0.99y = 7.35 \\ x + y = 5 \end{cases}$ is (3, 2). Match the number in the solution with the correct description. description.

x = 3 represents Number of Hamburgers

y = 2 represents Number of Fries

Number of Hamburgers	Cost of Hamburgers	Total Items
Number of Fries	Cost of Fries	Total Cost

Consider what each variable means in the system. When you solve for x, what are you Step 1 solving for in context of the problem? What about y? Answer these questions below.

x represents the number of hamburgers and y represents the number of fries.

© Perfection Learning® No reproduction permitted.

Lesson 2 Solving Linear Systems by Elimination or Substitution 149

• For Guided Practice #3, use images or sketches to explain the words: hamburgers, fries.

LESSON: PRACTICE

- Practice activities cover a range of DOK levels.
- QR codes link to instructional videos supporting the assignment.
- Full solution explanations are provided at point of use.

$$3x+2=\frac{1}{2}x-3$$

$$\frac{5}{2}x = -5$$

$$x = -2$$

Then
$$y = 3(-2) + 2 = -4$$
.

2. Use the substitution method. Solution steps are shown.

$$2(2y+8) - 3y = 18$$

$$4y + 16 - 3y = 18$$

$$y = 2$$

Then
$$x = 2(2) + 8 = 12$$
.

3. Eliminate answer choice A as the lines are parallel. Check answer choice B:

$$3x + 2\left(\frac{-3}{2}x + 4\right) = 8$$
$$8 = 8$$

A true statement results so this system has infinitely many solutions. Do the same for answer choice C:

$$-8\left(\frac{-1}{4}y + \frac{3}{4}\right) - 2y = -6$$

Again, this system has infinitely many solutions.

For answer choice D,

$$4x - 6\left(\frac{2}{3}x - 3\right) = 9$$

This is a false statement, so this system has no solution and is not a correct choice. For answer choice E simplify the equation in point-slope form. It becomes y = 3x - 1. These lines are parallel.

- 4. Rewrite the equation 3x 4y = 8 in slope-intercept form: $y = \frac{3}{4}x - 2$. Any equation with the same slope but different y-intercept will have no solution when paired with it in a system.
- 5. Use the elimination method. Solution steps are shown.

x = 5

$$2[x-y=9] \to 2x-2y=18 +3x+2y=7 \to +3x+2y=7 5x=25$$

150

LESSON 2 Solving Linear Systems by Elimination or Substitution

PRACTICE

Multiple-Choice Questions

Use the information provided in each question to determine your answer(s). Diagrams are not necessarily

1. Solve
$$\begin{cases} y = 3x + 2 \\ y = \frac{1}{2}x - 3 \end{cases}$$
. (DOK 2)

A.
$$\left(\frac{2}{5}, -\frac{14}{5}\right)$$

A.
$$\begin{cases} y = \frac{1}{2}x - 4 \\ y = \frac{1}{2}x + 2 \end{cases}$$

D.
$$\begin{cases} y = \frac{2}{3}x - 3 \\ 4x - 6y = 3 \end{cases}$$

$$\left\{
 \begin{array}{l}
 3x + 2y = 8 \\
 y = \frac{-3}{2}x + 4
 \end{array}
 \right.$$

E.
$$\begin{cases} y = 3x + 4 \\ y - 2 = 3(x - 1) \end{cases}$$

2. Solve the system
$$\begin{cases} 2x - 3y = 18 \\ x = 2y + 8 \end{cases}$$
. (DOK 2)

- A. Infinitely many solutions
- (B.) (12, 2)
- C. (2, 12)
- D. No solution

Open-Response Questions

Use the information provided to answer the questions in this part. Clearly indicate all your steps, and include substitutions, diagrams, graphs, charts, etc., as needed. Diagrams are not necessarily drawn

- 4. Write two equations that, when paired with 3x - 4y = 8 in a system of equations, would result in no solution. How do you know there is no (DOK 3)
- 5. Solve the system $\begin{cases} x y = 9 \\ 3x + 2y = 7 \end{cases}$. (DOK 2)

Student answers will vary. See below

6. Solve the system: $\begin{cases} 4x - 5y = 10 \\ y = \frac{2}{5}x - 4 \end{cases}$. (DOK 2)

150 Chapter 6 Systems

© Perfection Learning® No reproduction permitted

Solve for y.

$$5 - y = 9$$
$$y = -4$$

6. Use the substitution method. Solution steps are shown.

$$4x-5\left(\frac{2}{5}x-4\right)=10$$

$$2x = -10$$

$$x = -5$$

Solve for y.

$$y = \frac{2}{5}(-5) - 4$$

$$v = -\epsilon$$

Solving Linear Systems by Elimination or Substitution LESSON 2

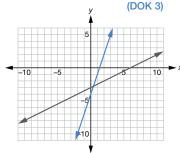
- **7.** Pair each of the equations below with the equation 2x + 5y = 5 to create a system and then determine the solution to each system.
 - i. -6x 15y = -15 b.
- a. No solution

- b. Infinitely many solutions
- iii. $y = -\frac{2}{5}x + 4$
- c. (0, 1)

iv. 3x - 4y = -4

- d. (5, -1)
- 8. Find the exact coordinates of the solution to the system graphed below. Express your final coordinates as fractions. (Hint: You will need to start by finding the slope-intercept form of each line graphed.)

The system is
$$\begin{cases} y = 3x - 4 \\ y = \frac{1}{2}x - 3 \end{cases}$$
; solution: $\left(\frac{2}{5}, \frac{-14}{5}\right)$



9. Kweku solved the system $\begin{cases} 2x + 4y = 9 \\ -3x - 6y = 2 \end{cases}$, but made a mistake. His work is shown below. At which step did he first make a mistake? What is the actual answer!

mist make a mistake: what is the actual answer:		
Step 1: $\begin{cases} -3(2x+4y=9) \\ 2(-3x-6y=2) \end{cases}$	Step 4: $y = \frac{23}{24}$	
Step 2: $\begin{cases} 6x - 12y = -27 \\ -6x - 12y = 4 \end{cases}$	$2x + 4\left(\frac{23}{24}\right) = 9$ Step 5: $2x + \frac{23}{6} = 9$ $2x = \frac{31}{6}$	
Step 3: $-24y = -23$	$2x = \frac{31}{6}$ $x = \frac{31}{12}$	

The mistake is in Step 1. There is no solution to

© Perfection Learning® No reproduction permitted.

Lesson 2 Solving Linear Systems by Elimination or Substitution

Substitute this value for *x* in either equation and solve for y:

9. If Kweku wanted to eliminate the

$$y = 3\left(\frac{2}{5}\right) - 4 = \frac{-14}{5}$$

x-variable, he should have multiplied the equations by +3 and +2, since the x terms already had opposite signs. If he had, the system would have become $\begin{cases} 6x + 12y = 27 \\ -6x - 12y = 4 \end{cases}$. Summing these equations eliminates both x and y,

resulting in 0 = 31, which is not true. The system has no solution.

Review

7. Consider each potential system.

$\begin{cases} 2x + 5y = 5 \\ -6x - 15y = -15 \end{cases}$	$\begin{cases} 2x + 5y = 5\\ 3x - y = 16 \end{cases}$	
These equations are the same; the second is equivalent to the first equation multiplied through by a factor of –3.	Use elimination to solve. $2x+5y=5$ $15x-5y=80$ $17x=85$ $x=5$ There is only one answer choice with an x -value of 5 .	
Infinitely Many Solutions (b)	(5, -1) (d)	
$\begin{cases} 2x + 5y = 5\\ y = -\frac{2}{5}x + 4 \end{cases}$	$\begin{cases} 2x + 5y = 5\\ 3x - 4y = -4 \end{cases}$	
Use substitution to solve. $2x+5\left(-\frac{2}{5}x+4\right)=5$ $2x-2x+20=5$ $20 \neq 5$ This is a false statement.	Use elimination to solve. Multiply the first equation by -2 and the second by 3. Then $-6x+8y=8$ $6x+15y=15$ $23y=23$ $y=1$ There is only one answer choice with a y -value of 1.	
No Solution (a)	(0, 1) (c)	

8. Write the system using the *y*-intercepts and a second point on each line. The system is

$$\begin{cases} y = 3x - 4 \\ y = \frac{1}{2}x - 3 \end{cases}$$

Solve by substitution.

$$\frac{1}{2}x - 3 = 3x - 4$$
$$x = \frac{2}{3}$$

OPEN EDUCATIONAL RESOURCES

- Save time with carefully curated open resources.
- Open resources include interactive activities, simulations, videos, and digital tools.
- Time estimates and activity synopses are provided to assist in planning and usage.

INTRODUCTION

Give an example of a problem that could be solved using a system of linear equations.

Student answers will vary. Any situation that relates two variables using two linear equations is appropriate.

Explain how to write a system of equations from a word problem.

Student answers will vary. One possible answer: To write a system of equations from a word problem, I must first determine how many variables are in the problem. The number of unknown variables tells me how many equations I will need in order to solve my unknowns. Then I need to look at the context for clues, breaking down the problem sentence by sentence.

GUIDED INSTRUCTION

How can you determine if two given systems of equations are equivalent?

Student answers will vary. One possible answer: I can determine if two systems of equations are equivalent by transforming each equation into slope-intercept form. If they are equivalent, the equations will be the same for both systems.

LESSON 3

Creating Systems of Linear Equations

In this lesson you will practice writing systems of linear equations.

INTRODUCTION Writing Linear Systems

A gym sells day passes for use of the pool and use of the racquetball courts. Passes for the pool cost \$3.50 per day. Passes for the racquetball court cost \$4.00 per day. In one month, Alida spends \$53.50 on passes and goes to the gym 14 times. How many times did Alida go to the pool and to the racquetball court? Write and solve a system of equations. Use the table below to help you answer these questions.

What is being asked? In this case, the question is, How many times did Alida go to the pool and to x = number of visits to the poo the racquetball court? · Define two variables for the two unknowns in the y = number of visits to the racquetball court box to the right. There is information about the cost and about the Write an equation for the cost of the number of passes in the sentence, In one month, passes 3.5x + 4y = 53.50Alida spends \$53.50 on passes and goes to the gym 14 times. Write an equation for the number of • Use x and y and the information in the sentence to write two equations passes: x + y = 14Solve the system. Solve the equation x + y = 14 for y. The equation x + y = 14 can be easily solved for y. Solve this equation to the right. Solve the system using substitution in the space below. -0.5x + 56 = 53.5 -0.5x = -2.53.5x + 4(14 - x) = 53.53.5x + 56 - 4x = 53.5Answer the following questions in the box to the Pool visits: 5 · How many times did Alida go to the pool? \bullet How many times did Alida go to the racquetball Racquetball court visits: 9 court?

GUIDED INSTRUCTION Choosing the Correct System

Prasad is 5 years older than Jamal. Jamal is twice the age of Menuha. Together, the ages of Prasad, Jamal, and Menuha sum to 50. How old are Prasad, Jamal, and Menuha?

Consider the systems of equations shown in the table at the top of the next page. To choose the correct system, check the following: $\frac{1}{2} \left(\frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} \right) \left($

- · Does the system have the correct number of variables?
- · Do the equations match the given information?
- Solve the system. Does the answer make sense given the information in the problem?

152 Chapter 6 Systems

© Perfection Learning® No reproduction permitted

EXTENSION ACTIVITIES

Activities

Linear Systems: Gym Membership

This is an extension you can use after students are comfortable creating linear equations. (Approximately 40 minutes)

https://teacher.desmos.com/activitybuilder/custom/561d6a790784861e06c3a6dc

Systems of Linear Equations

In this activity students will write systems of equations from word problems and then graph the equations on the *xy*-plane. (Approximately 20 minutes)

https://www.geogebra.org/m/Vtd7Xaas

A.CED.2 • A.CED.3 • A.REI.5 • A.REI.6 • A.REI.11 • N.Q.2 LESSON 6

System 1	System 2	System 3
P + J + M = 50	P + I + M = 50	P = J + 5
T = P + 5	P = J + 5	J = 2M
M = 2J	J=2M	

The ages of Prasad, Jamal, and Menuha are unknown. In the systems above, how are the variables defined?

- P = Presad's age
- J = Jamal's Age
- M = Menuha's Age

Prasad is 5 years older than Jamal. Which equation listed above best describes this relationship?

P=J+5

Jamal is twice the age of Menuha. Which equation listed above best describes this relationship?

J=2M

Together, the ages of Presed, Jamel, and Menuha sum to 50. What equation can be written to show this sum?

P + J + M = 50

Which is the correct system? System 2.

Solve the correct system below. Check your answer as shown.

P + J + M = 50 P = J + 5 J = 2MSimplify and solve for M. Substitute 2M for J in the second 5M + 5 = 50 5M = 45M = 9If M = 9, then J = 2(9), J = 18. P = 2M + 5If J = 18, then P = 18 = 5, P = 23. Write the first equation in terms of M. Check: Let P = 2M + 5 and J = 2M. Is Presad 5 years older than Jamal? Yes P + J + M = 50Is Jamal twice the age of Menuha? Yes-(2M+5)+2M+M=50Is the sum of the ages 507 Yes

RECAP

1. Generally, which part of a problem helps you to determine what the variables are? Use examples from the lesson to explain your answer.

Student answers will vary. Generally, the question at the end of a problem tells what is unknown, such as the ages of people, or the number of times visited to the pool or court.

C Perfective Learning* 100 reproduction permitted

Lesson 3 Creating Systems of Linear Equations 153

Video

Systems of Linear Equations in Two Variables

This animation Reiterates the importance of the intersection point by walking students through a problem and solution. (Length: 6:37) https://www.youtube.com/watch?v=75m6oSxFfJg&t=19os

Instruction

VOCABULARY ELL

- · For the introduction problem, use images or sketches to explain the words: gym, pool, racquetball, passes.
- · Ask students to record the following academic vocabulary and definitions in their Vocabulary Notebook: real world (in life, not just in the classroom), make sense (to be clear or correct), justify* (give reasons for), verbal (with words), corresponding* (matching, being the same as), interpret* (to explain, to figure out), exceed* (to be greater or more than, to go over), state (to say).
- · Have students review the following math vocabulary: system of equations*, substitution*, elimination*, coordinates*, sum*, equation*, variable*, multiplying*, equivalent, solution*.

Algebra 1

153

VISUALIZATION AND MODELING

- Modeling and visualization activities help students deepen understanding.
- Comparing models promotes discovery and stimulates active discourse.

GUIDED PRACTICE

Question 1: Visual Summary

Purpose

In this activity, students create their own visual summary of a process to help them translate word problems into systems of equations.

Implementation

- Divide students into pairs or have them complete this task individually.
- Consider providing a framework for the visual summary, or allow students to create their own. A sample is shown below.
- Once students have completed their visual summary, select a few to share, or complete a class visual summary to be displayed on the classroom wall for reference.

LESSON 3 Creating Systems of Linear Equations

GUIDED PRACTICE

1. Two numbers have a sum of 34 and a difference of 18. What are the numbers? Write a system of equations and solve the problem using elimination.

Step 1 Define the variables.

- Let x = the first number
- Let v = the second number

Step 2 Write one of the equations using the statement, *Two numbers have a sum of 34*.

• x + y = 34

Step 3 Write the second equation using the statement and a difference of 18.

• x - y = 18

Step 4 Use the elimination method to solve the system in the space below.

$$x + y = 34$$
 $26 + y = 34$ $x - y = 18$ $2x = 52$ $x = 26$

Check your answer below. Do your two numbers have a sum of 34 and a difference Step 5

26 + 8 = 34 and 26 - 8 = 18

Recall that equivalent equations are equations that have the same solutions. Are the two systems of equations below equivalent? How do you know?

System 1	System 2
3x + 2y = 12	-3x - 2y = -12
y = x + 1	2x + 3y = 13

Examine the equations in the systems.

 \bullet What similarities are there between the equations in System 1 and System 2? The first equations in each system are different only by a multiple of -

Step 2 Can you produce any of the equations in System 2 by multiplying any of the equations in System 1 by a constant? Justify your answer below.

Yes, multiplying 3x + 2y = 12 by -1 results in -3x - 2y = -12.

154 Chapter 6 Systems

Step 1

Carefully read the problem. Underline important information.

Step 2

Define variables Write down what they mean. For example: Let and let

Be as specific as possible.

Step 3

Use the underlined information and the defined variables to write the equations.

Check to make sure the equations make sense!

Algebra 1 154

© Perfection Learning®

END-OF-COURSE EXAM STYLE PRACTICE

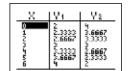
Creating Systems of Linear Equations

LESSON 3

Solve each system in the boxes below.

System 1	System 2
3x + 2y = 12 y = 2 + 1 y = x + 1 y = 3 3x + 2(x + 1) = 12 3x + 2x + 2 = 12 (2,3) 5x + 2 = 10 x = 2	$2(-3x-2y=-12) \rightarrow -6x-4y=-24$ $3(2x+3y=13) \rightarrow +6x+9y=39$ $5y=15$ $y=3$ $-3x-2(3)=-12$ $-3x=6=-12$ $-3x=-6$ (2,3)
Are the solutions the same? Yes	
Are the systems equivalent? Yes	

3. The table shows data from a system of two equations, Y₁ and Y₂. Write the two equations that form the system. What is the solution to the system? (DOK 3)



Write the equation for Y,.

• Use two points to calculate the slope. (0,2) and (3,3)

 $m = \frac{3-2}{3-0} = \frac{1}{3}$

- What is the *y*-intercept? (0, 2)
- Write the equation of the line in slope intercept form. $y = \frac{1}{3}x + 2$

Step 2 Write the equation for Y, below. Use the same process as in Step 1.

 $m = \frac{3-4}{3-0} = -\frac{1}{3}$

Step 3 In the table above, find the *x*-coordinate where the *y*-values are the same for both Y, and Y., What does this mean about the solution to the system?

This means that when x = 3, y = 3 for both equations and (3, 3) is the solution to the

Verify your solution from Step 3 by solving the system.

LESSON 3 Creating Systems of Linear Equations

PRACTICE

Multiple-Choice Questions

Use the information provided in each question to determine your answer(s). Diagrams are not necessarily

Use the following information for Questions 1 and 2.

The local school is putting on a play. Tickets cost \$10 for senior citizens and students and \$15 for community members. The school sells 700 tickets for a total of \$9,500

1. Which system of equations that models this (DOK 2) scenario.

10s + 15c = 950010s + 15c = 700 C. $\begin{cases} 10s + 15c = 700 \\ s + c = 9500 \end{cases}$

 $\int 10s + 15c = 9500$

D. $\begin{cases} 10s + c = 700 \\ s + 15c = 9500 \end{cases}$

- 2. How many of each ticket did they sell? (DOK 2) A. 500 Senior/Student, 200 Community
 - B. 700 Senior/Student, 0 Community
 - C. 300 Senior/Student, 400 Community
 - D.) 200 Senior/Student, 500 Community
- 3. Which of the following systems are equivalent? Select all that apply. (DOK 3)

(4x + 5y = 8)y=2x+3

C. $\begin{cases} y = 6x + 5 \\ y = 2x + 3 \end{cases}$

E. $\begin{cases} y = 3x + 4 \\ y - 2 = 3(x - 1) \end{cases}$

B. $\begin{cases} 8x + 10y = 16 \\ y = 4 & \text{i.i.} \end{cases}$

Open-Response Questions

Use the information provided to answer the questions in this part. Clearly indicate all your steps, and include substitutions, diagrams, graphs, charts, etc., as needed. Diagrams are not necessarily drawn

- Each chapter concludes with end-of-course exam style practice.
- Each chapter test item is tagged with a DOK level.

PRACTICE

1. Define *s* as the number of senior/student tickets sold and c as the number of community member tickets sold. The equations are

$$\begin{cases} 10s + 15c = 9500 \\ s + c = 700 \end{cases}$$

2. Solve the system from Practice 1, using either elimination or substitution. By substitution,

s = 700 - c

10(700-c)+15c=9500

700 - c + 1.5c = 950

700 + 0.5c = 950

0.5c = 250

c = 500

Since c = 500 tickets, s = 200 tickets.

3. Find the solution of the first system; it is $\left(-\frac{1}{2},2\right)$. Now substitute this point into each of the other given systems to see that true statements result each time. All the systems are equivalent except for answer choice E.

- 4. The given system has the solution of (0,2). Any system with this solution is equivalent to the original system.
- 5. Let *x* be the cups of lemonade and y be the packages of cookies. The equations are x + 1.5y = 280 and x = 2y. By substitution,

(2y)+1.5y=280

3.5 y = 280

y = 80

and

x = 2y = 2(80) = 160

Student Application

Driven by the powerful *Math*^x personalized practice and assessment system, the student application provides a full range of assignments and authentic practice for Algebra 1 end-of-course assessment, including

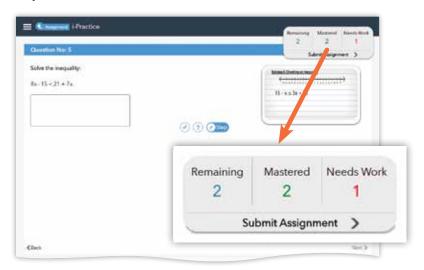
- i-Practice personalized assignments
- online homework assignments
- quizzes and chapter tests

- diagnostic tests
- exam practice

i-PRACTICE PERSONALIZED PRACTICE

Each *i-Practice* assignment can be customized to small groups or individual students. By focusing on specific skill areas, students can practice their way to success.

- Incorrect answers automatically generate new problems for students to attempt.
- A scoring counter shows progress on the assignment.
- Guided practice provides point-of-use help.
- Students have the option to stop and return to the assignment at any time.



GUIDED PRACTICE ASSISTANCE

For *i-Practice* and homework assignments, students have a wealth of help accessible next to the problem. By providing multiple help options, the program addresses different learning styles and ability levels.

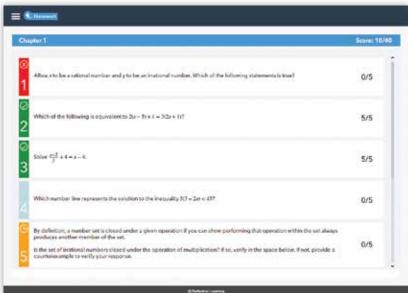
- Video provides step-by-step instruction for a similar problem.
- Step-by-Step Help guides students through each step of a multi-step problem.
- A help button gives problem hints and tips.
- Smart feedback responds to students' incorrect answers with suggestions.

Collect like terms	$3 = 4a + 7$ $4 \qquad a - 8 = 4a - 4$
Combine like terms 7a -	-4a - 8 = 0 + 7 $-a - 8 = 7$
Remove the constant 3a Remove the constant on to Add 8 to both sides of the	he left, which is -8, to get the a term by itself.

ONLINE HOMEWORK, QUIZZES, AND TESTS

Assignments allow students the flexibility to answer questions in any order and give immediate feedback once an answer is submitted.

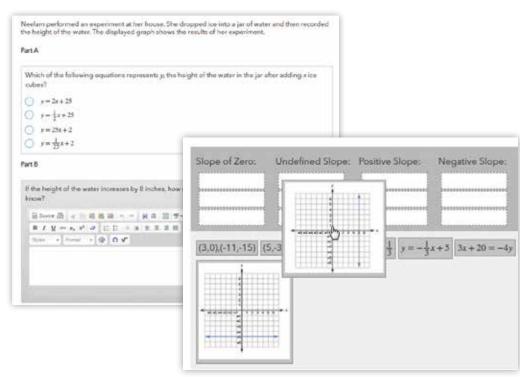
- Homework parameters set by the teacher allow multiple tries.
- Help functions (videos, hints/tips, step-by-step) appear for homework.
- Quizzes and tests eliminate the help functions automatically. Tests allow only one try. Quizzes allow for one or more tries, as set by the teacher.
- Assignment due dates, grades, and teacher communications are all easily visible from the student dashboard.



TECHNOLOGY-ENHANCED ITEMS

Research shows that content mastery requires the ability to respond to a wide range of problem formats. Question types include

- multiple-choice
- multiple-select
- open response (text)
- open response (Equation Editor)
- drag and drop
- editing task choice
- selectable hot text
- GRID items
- table items
- · matching items



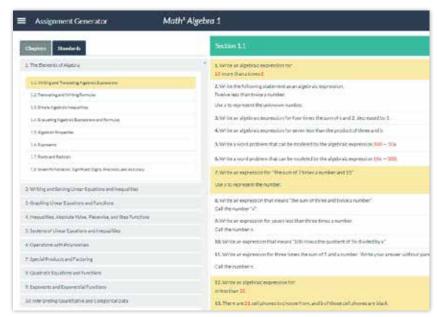
Teacher Application

Driven by the powerful $Math^x$ personalized practice and assessment system, the teacher application provides a full range of assignment, reporting, and grading functions. Comprehensive alignment with standards provides teachers the ability to monitor student progress in real time and customize assignments based on performance. The digital Teacher Package includes access to a projectable version of the Student Edition.

PRE-BUILT ASSIGNMENTS

Each assignment is aligned with the *Connections Mathematics: Algebra 1* lessons. Pre-built assignments include

- *i-Practice*, homework, quizzes, chapter tests, model end-of-course
- exams, and diagnostic testsone-click due date assignment
- standards covered by each lesson with rollover explanations for the standards
- easy assignment modification functionality



CUSTOMIZABLE ASSIGNMENTS AND TESTS

Modify the pre-built assignments or create your own.

- Choose from thousands of items by standard or by lesson.
- Differentiate assignments for small groups or individuals.
- Create unique assignments for each student using "vary the parameter" technology.
- Print assignments for pencil and paper exercises.

REAL-TIME PROGRESS MONITORING

Grade book functions allow teachers to monitor student progress in real time.

- assignments are automatically graded at time of submission
- at-a-glance look at student and class performance across homework, quizzes, and tests
- one-click access to individual student performance
- manage due dates and late assignments for individual students
- add/drop grades
- export function for district grade books

EXTENSIVE REPORTING CAPABILITY

Reporting and drill-down functions allow teachers to

- assess class and student performance by standard or lesson
- identify students and topics for reteaching and remediation
- group students by ability and performance levels
- evaluate item-level performance by class and by student

- CONNECTIONS Mathematics -Algebra 1 --

The **Connections Mathematics** program provides the foundation for Algebra 1 success. Each lesson helps students identify areas of weakness, receive targeted instructional support and practice, and prepare for end-of-course examinations.

Students engage in active discourse to build math literacy through

- · discovery-based learning
- direct instruction
- personalized practice
- real-world application, extension activities, and authentic practice

Find your sales consultant at perfectionlearning.com/contacts

For more information on the Connections Mathematics: Algebra 1 program, visit perfectionlearning.com/connections-algebra-1